The entry and clearance of Ca2+ at individual presynaptic active zones of hair cells from the bullfrog's sacculus.

نویسندگان

  • N P Issa
  • A J Hudspeth
چکیده

Neurotransmitter is released when Ca2+ triggers the fusion of synaptic vesicles with the plasmalemma. To study factors that regulate Ca2+ concentration at the presynaptic active zones of hair cells, we used laser-scanning confocal microscopy with the fluorescent Ca2+ indicator fluo 3. The experimental results were compared with the predictions of a model of presynaptic Ca2+ concentration in which Ca2+ enters a cell through a point source, diffuses from the entry site, and binds to fixed or mobile Ca2+ buffers. The observed time course and magnitude of fluorescence changes under a variety of conditions were well fit when the model included mobile molecules as the only Ca2+ buffer. The results confirm the localized entry of Ca2+ underlying neurotransmitter release and suggest that Ca2+ is cleared from an active zone almost exclusively by mobile buffer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efferent Control of the Electrical and Mechanical Properties of Hair Cells in the Bullfrog's Sacculus

BACKGROUND Hair cells in the auditory, vestibular, and lateral-line systems respond to mechanical stimulation and transmit information to afferent nerve fibers. The sensitivity of mechanoelectrical transduction is modulated by the efferent pathway, whose activity usually reduces the responsiveness of hair cells. The basis of this effect remains unknown. METHODOLOGY AND PRINCIPAL FINDINGS We e...

متن کامل

Adaptation of mechanoelectrical transduction in hair cells of the bullfrog's sacculus.

Adaptation in a vestibular organ, the bullfrog's sacculus, was studied in vivo and in vitro. In the in vivo experiments, the discharge of primary saccular neurons and the extracellular response of saccular hair cells were recorded during steps of linear acceleration. The saccular neurons responded at the onset of the acceleration steps, then adapted fully within 10-50 msec. The extracellular (m...

متن کامل

Calmodulin controls adaptation of mechanoelectrical transduction by hair cells of the bullfrog's sacculus.

Deflection of the mechanically sensitive hair bundle atop a hair cell opens transduction channels, some of which subsequently reclose during a Ca2+-dependent adaptation process. Myosin I in the hair bundle is thought to mediate this adaptation; in the bullfrog's hair cell, the relevant isozyme may be the 119-kDa amphibian myosin I beta. Because this molecule resembles other forms of myosin I, w...

متن کامل

Enhancement of sensitivity gain and frequency tuning by coupling of active hair bundles.

The vertebrate inner ear possesses an active process that provides nonlinear amplification of mechanical stimuli. A candidate for this process is active hair bundle mechanics observed, for instance, for hair cells of the bullfrog's sacculus. Hair bundles in various inner ear organs are coupled by overlying membranes. Using a stochastic description of active hair bundle dynamics, we study the co...

متن کامل

Rapid, active hair bundle movements in hair cells from the bullfrog's sacculus.

Hair bundles, the mechanically sensitive organelles of hair cells in the auditory and vestibular systems, are elastic structures that are deflected by sound or acceleration. To examine rapid mechanical events associated with mechanoelectrical transduction, we stimulated individual hair bundles with flexible glass fibers and measured their responses with a temporal resolution of 400 microsec. Wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 93 18  شماره 

صفحات  -

تاریخ انتشار 1996